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1 Introduction

Sample selection exists in many social-economic contexts (Heckman, 1974, 1978, 1979).

A typical example of such context is the wage structure of female workers, where

wages are only observed for those participating in the labor force (Gronau, 1974,

Heckman, 1974). A classical approach for dealing with sample selection is the two-

step correction method in (Heckman, 1979), which requires parametric assumptions on

the correlation between unobserved errors determining sample selection and observed

outcomes. This approach allows for dependence between selection and outcomes within

each independent observation, but can not be applied when there are spillover (e.g., peer

or contextual) effects in the outcome and/or selection across individuals.

For instance, in the example above, the workers’ outcomes (wages) may well be

determined simultaneously within small groups (e.g., those in the labor force from

the same geographic area) as in a social interactions model with peer, contextual and

correlated effects. Even if a worker’s decision to participate in the labor force depends

solely on her own idiosyncratic factors, a proper correction for such selection bias would

require dealing with the endogenous selection of the other workers in the same group

as well. This is simply because in the presence of social interactions, the reduced-form

of each worker’s wage also depends on the idiosyncratic factors of other workers in the

same group. As a result, the selection bias in these other group peers also need to be

addressed properly in the reduced form of individual outcomes.

In this paper, we investigate the sample selection issue in a social interactions model

where individual outcomes are influenced by peer effects. Social interactions models

with peer effects have proliferated in empirical research in recent decades (Manski,

1993, 2000, Brock and Durlauf, 2001a, Moffitt, 2001, Lee, 2007, Bramoullé, Djebbari,

and Fortin, 2009). Evidence of peer effects has been found in many fields, including
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economics of education (Hoxby, 2000, Sacerdote, 2001, Calvó-Armengol, Patacchini,

and Zenou, 2009), financial economics (Hong, Kubik, and Stein, 2004), health economics

(Trogdon, Nonnemaker, and Pais, 2008), labor economics (Topa, 2001, Dahl, Løken, and

Mogstad, 2014), and urban economics (Glaeser, Sacerdote, and Scheinkman, 1996).

Most existing empirical papers that study peer effects use experiments or quasi-

experiments to randomly assign members into groups. In such cases, group formation

can be taken as exogenously given. In contrast, we explain group formation in a social

interactions model by allowing potential members of a group to endogenously join the

actual group (e.g., participate in the labor force from the same area). We take the

definition of potential groups as given and fixed, so that self-selection arises only due

to individual decisions to participate in the actual groups. The outcome for each actual

group member is then affected by, and determined simultaneously with, the outcomes of

group peers. Again, consider the wage example above. In that setting, a potential group

consists of individuals from the same area who could potentially join the labor force.

The actual group then consists of participants in the labor force from that area who were

recorded in the sample with wage information.

Several earlier papers studied peer effect models with other forms of endogeneity in

group memberships. Carrell, Sacerdote, and West (2013) showed that group composition

can be highly endogenous in practice. Goldsmith-Pinkham and Imbens (2013), Hsieh and

Lee (2016), and Auerbach (2022) studied network models with dyadic links formed from

unobserved individual heterogeneity. Boucher (2016) considered a model of conformism

where agents simultaneously choose a continuous outcome and which peers to form links

with. Badev (2021) developed a model where individuals simultaneously make binary

decisions and choose the links to form. Johnsson and Moon (2021) and Jochmans (2023)

studied the peer effects when the social network is endogenous to the outcomes due to

unobserved individual characteristics. Sheng and Sun (2021) modeled group formation
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using a notion of stability in a matching model.

In contrast with these papers, we deal with a qualitatively different form of

endogeneity in group formation. In our case, individuals in exogenously-defined

potential groups choose whether to actively join the actual group. Specifically, we

consider an application of online training program for elementary and middle school

teachers in rural China. In this context, we define a potential group as the set of all

teachers enrolled in the training program from the same county. We then construct

an actual group as the subset of the potential group, who attended a particular lecture.

In other words, self-selection into an actual group simply means the teacher chose to

attend that lecture. The outcome of interest is the duration for which a teacher stayed

in a lecture. These individual outcomes are continuous, simultaneously determined, and

only reported for the actual group members. We combine the identification of social

interactions models with the solution to sample selection issues.

Our identification results are due to earlier ideas from Manski (1993) and Brock

and Durlauf (2001b). To put this in context, consider a linear-in-means social

interactions model with a contextual effect from the characteristics of group members,

and an endogenous peer effect capturing a structural simultaneity between all individual

outcomes within a group.1 Manski (1993) pointed out that, without further restrictions,

the peer effects can not be separated from the contextual effects from the reduced form

coefficients in this model. He proposed a solution to the problem using an exclusion

restriction, i.e. there are covariates with non-trivial direct effects but no contextual effects

(Proposition 2). Similar exclusion restrictions were used in Moffitt (2001) for identifying

peer effects.2 The identification strategy we use in this paper is based on insights from

1In the terminology of social interactions, contextual effects refer to how the characteristics of group
peers directly impact an individual’s outcome in a structural form. In comparison, peer effects reflect how
the individual outcomes of all group peers are jointly determined in a simultaneous system.

2There are other alternatives for solving the identification problem: second-moment restrictions on
the error terms (Lee, 2007, Graham, 2008, Sacerdote, 2001), variation in the group sizes (Bramoullé,
Djebbari, and Fortin, 2009, De Giorgi, Pellizzari, and Redaelli, 2010, Lin, 2010), and control functions for
endogenous covariates (Lin and Tang, 2022), etc.
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Brock and Durlauf (2001b) (Section 3.6). Hoshino (2019) studies social interactions with

incomplete information and missing observations due to sample selection. The method,

however, is different from this paper. He uses a different identification strategy, i.e.,

network variation (Bramoullé, Djebbari, and Fortin, 2009) and proposes a two-step series

nonlinear least squares estimator.

We propose a multi-step estimator for peer and contextual effects, building on

this constructive argument for identification. First, a Probit regression of the binary

response model (a.k.a. the selection equation) provides consistent estimates for the

selection correction term. Second, by including the estimates of the individual and group

correction terms as generated regressors in a linear regression, we estimate the reduced-

form coefficients in a social interactions model, which are then used for backing out the

peer and contextual effects.

We generalize the core idea in Section 4 to allow group-level unobserved

heterogeneity (GUH) in outcome as well as group selection. Both are empirically

relevant extensions. In the case with GUH in outcomes, we use approaches analogous

to fixed-effect or random-effect methods in panel data. The case with GUH in group

selection is more complicated, and requires a correlated random-effect method which

entails maximum simulated likelihood in the first step.

We then study the peer effects in an online training program for elementary and

middle school teachers in China. In this setting, a potential group consists of teachers

enrolled in the program from the same county. These teachers decided to participate

or skip each specific lecture, based on self-motivation and other factors. This results

Brock and Durlauf (2001b) (Section 3.6) showed such exclusion restrictions naturally arise when
individuals’ endogenous self-selection into groups are accounted for in social interaction models. They
considered a setting where each individual is associated with a reservation group, and rationalized
individual participation in observed groups through binary choices. They exploited the exogenous variation
in individual instruments in binary responses to identify the peer effects. Brock and Durlauf (2001b) noted
that the individual correction terms for self-selection essentially could essentially function as generated
regressors which satisfy the exclusion restriction in Manski (1993). Consequently, peer and contextual
effects can be recovered from coefficients in the reduced-form equation. See Equation (69) and (71) in
Brock and Durlauf (2001b) for details.
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in a non-random sample of actual groups (lecture attendants from the same county)

based on endogenous self-selection. The outcome of interest is the duration of lecture

attendance by each individual. This depends on unobserved noises related to self-

motivation, which may well be correlated with those determining lecture participation

in the first place. For example, the duration of lecture attendance is specified as a

model with peer and contextual effects, while its error may be related to the decision

on participation (self-selection). Thus, this endogenous sample selection gives rise to

new challenges for estimating peer effects in the duration of lecture attendance. Using

our multi-step estimator, we find significant peer effects among trainees attending the

same lecture. Also, ignoring the sample selection issue in this context would result in an

erroneous conclusion about the magnitude and significance of the peer effects. Ignoring

sample selection would over-estimate the peer effects. Teachers may decide to stay longer

because they are more motivated, not only because of positive peer effects. So, if we drop

the first factor (motivation) in estimation by ignoring sample selection, we may end up

over-stating the significance of the latter factor (peer effects).

It is worth emphasizing that the method in this paper provides a feasible way to

study the effect of policy interventions under social interactions when there is imperfect

compliance with group assignment (i.e., researchers have less control over the group

composition). In randomized control trials (RCTs), a researcher may offer exogenous

incentives for group participation. For instance, one may introduce random factors that

encourage group participation but do not directly affect individual outcomes (e.g., by

offering credits or subsidies for lecture attendants). Such random factors could then

serve as instruments in the selection equation; their variation across the groups helps

researchers to identify peer and contextual effects.

The paper unfolds as follows. We introduce the peer effects model with sample

selection and discuss its identification in the next section. We propose a multi-step
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estimator in Section 3. Section 4 then shows how to extend the method where there

are unobserved group fixed effects. We show the finite-sample performance of the

estimator via Monte Carlo simulations in Section 5. Finally, we apply our method in

the empirical application of peer effects in the online training program for teachers in

Section 6. Section 7 concludes.

2 The Model

We consider a data-generating process (DGP) which generates a large number of

independent groups, indexed by g = 1,2, ...,G. Each group has a set of potential

members, denoted by Ng. We suppress the group index g in the notation in this section.

Our model specification is similar to that considered in Section 3.6 of Brock and Durlauf

(2001b), but deviates by allowing the peer and contextual effects to operate through group

averages, as opposed to some (conditional) population expectation.3

The model extends conventional linear-in-means social interactions models by

allowing individuals to join a group as actual members through endogenous self-selection

(e.g., teachers enrolled in the training program from the same county decide whether

to attend a specific lecture). Specifically, for i ∈ N , the decision to join a group is

determined as:

Di = 1{Z′
iδ +Vi ≥ 0}. (1)

Henceforth we refer to Zi as individual instruments.

For each group, let n denote the number of actual members, i.e., {i ∈ N : Di = 1}.4

The vector of outcomes (e.g., the length of time for which a teacher stayed in the lecture)

3In the latter case, a consistent estimation of the group-level correction term, i.e., E[λ (γ ′Ri)|i ∈ n(i)]
in Brock and Durlauf (2001b), would not be practical if the group sizes are small and the individual labels
can not be matched across the groups.

4Without loss of generality, we index the members of an actual group as i = 1,2, ...,n.
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of actual group members are determined simultaneously as:

Y = αY +β0 +X ′
β +X ′

γ +U, (2)

where X ′ is an n × K matrix of individual characteristics (which does not include a

constant intercept), X ′ is an n×K matrix of n identical rows with each being a 1×K

vector of average characteristics within the group, Y is the average outcome of individuals

within the group, and U ≡ (Ui)i≤n is an n×1 vector of individual structural errors. We use

an overall group average, as opposed to a "leave-one-out" average of other peers. This

is the empirical analog of the original linear-in-mean specification in Manski (1993).

This specification is used in a variety of empirical contexts (see, for example, Trogdon,

Nonnemaker, and Pais, 2008, Mora and Gil, 2013).

The individual instruments Zi contain elements that are not in Xi. While the data

report (Di,Zi) for all potential group members i∈N , it only reports individual outcomes

Yi and demographics Xi for n actual group members.

By solving for the reduced form of Y and substituting it back into the structural form

in (2), we have

Y = β̃0 +X ′
β +X ′

γ̃ +Ũ , (3)

where Ũ ≡U + α

1−α
U with U ≡ 1

n ∑i≤nUi, β̃0 ≡ β0
1−α

, and γ̃ ≡ αβ+γ

1−α
. Let S be shorthand

for the selection event that "Di = 1 for all i = 1,2, ...,n and D j = 0 for all other j ∈ N ".

Define ε ≡ Ũ −E(Ũ |X ,Z,S ), where Z ≡ (Zi)i∈N denotes the vector of all instruments

associated with all potential members. Then write (3) as

Y = β̃0 +X ′
β +X ′

γ̃ +E(Ũ |X ,Z,S )+ ε, (4)

where (X ,Z) are exogenous in the sense that E(ε|X ,Z,S ) = 0. Thus the conditional

mean of Ũ in (4) serves as a correction for the sample selection bias, which is due to

the correlation between U and V ≡ (Vi)i∈N (e.g., the unobserved factors affecting the
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duration of a teacher’s attendance is correlated with those in his own and others’ decisions

on whether to attend the lecture). We maintain the following assumptions, which allow

us to derive the correction term.

Assumption 1. (i) E[Ui|V,Z,(Xi)i∈N ] = E(Ui|Vi) for each i ∈N . (ii) V is independent

from (Xi,Zi)i∈N , and Vi’s are independent across i ∈ N . (iii) For each i, the vector

(Ui,Vi) follows a bivariate normal distribution with σuv , 0:

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
σ2 σuv

σuv 1

))
.

Remark 1. Assumption 1 allows the n-vector of structural errors U to be correlated

among individual members, possibly through group fixed effects. It only restricts the

correlation between Ui and Vi for each i, as well as the independence between the

selection errors Vi across i ∈ N .5 In Section 4.2 we generalize the setting by allowing

individual unobserved heterogeneity to be correlated through group fixed effects. Note

that the issue of sample selection arises because the structural errors in the outcomes

and participation decisions are correlated, i.e., σuv , 0. If σuv = 0 in Assumption 1, there

would be no sample selection bias at all.

Under Assumption 1, we have

E(Ui|X ,Z,S ) = E(Ui|Vi ≥−Z′
iδ ) = σuvλ (Z′

iδ ), (5)

where λ (Z′
iδ ) =

φ(−Z′
iδ )

1−Φ(−Z′
iδ )

≡ λi is the inverse Mills ratio (as in Heckman, 1979). Since

its introduction by Heckman (1979), this method for correcting sample selection bias has

been applied widely in theory and practice. After correcting for the selection bias, we

write the reduced form for each i as

Yi = β̃0 +X ′
i β +X ′

γ̃ +σuvλi + σ̃uvλ̄ + εi (6)
5For example, suppose (U,V ) is multivariate normal and independent from (X ,Z). Assumption 1 does

not restrict the off-diagonal entries in the upper-left quadrant of its covariance matrix. On the other hand,
it requires all three of the remaining quadrants to be diagonal.
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where σ̃uv ≡ α

1−α
σuv, and λ̄ is the average of λi over all i ≤ n in a group.

Let Wi ≡ (1,X ′
i ,X

′
,λi, λ̄ ) denote a row-vector in R2K+3. As long as E(W ′

i Wi) is non-

singular, we can consistently estimate (β̃0,β , γ̃,σuv, σ̃uv) by regressing Yi on Wi. Then we

can recover the structural parameters in (2) as:

α =
σ̃uv

σ̃uv +σuv
; β0 = (1−α)β̃0; γ = (1−α)γ̃ −αβ . (7)

As noted above, if σuv = 0, there would be no sample selection bias, and the model

of outcomes in (2) would reduce to a standard linear-in-means model. In that case,

we have 2K + 1 parameters, {β̃0,β , γ̃} in the reduced form and 2K + 2 parameters

{α,β0,β ,γ} in the structural form. The failure of order condition – there are fewer

reduced-form coefficients than structural ones – leads to the reflection problem (Manski,

1993). With σuv , 0, we introduce one additional parameter σuv in the structural form, but

generate two parameters {σuv, σ̃uv} in the reduced form. Thus, the number of structural

and reduced-form parameters are equal. Furthermore, the rank condition required for

recovering the structural parameters from the reduced form ones also holds. Without

sample selection, we would not be able to use individual instruments from (1) as a source

of exogenous variation to help us resolve the reflection problem.

There is another intuitive interpretation of our method. We have introduced

individual-level correction terms for the selection bias in the structural form of this model.

These correction terms then conveniently function as generated regressors which satisfy

the exclusion restrictions in Manski (1993). Therefore, we are able to solve the “reflection

problem” without imposing further assumptions.

3 Estimation

We define a multi-step estimator based on the constructive identification strategy above.

For simplicity, we present the estimator when X is a strict sub-vector of Z; generalization
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to cases where Z contains distinct elements from X is straightforward.

Let the sample contain G independent groups. Each group g is formed out of a finite

superset of potential members, which is denoted by Ng. Each potential member i ∈ Ng

chooses to join the group g or not, Dg,i ∈ {0,1}, by following the rule in Equation (1).

We refer to those who choose Dg,i = 1 and self-select into the group as the actual group

members. Let ng = ∑i∈Ng Dg,i denote the actual size of group g. For each group g ≤ G,

the sample reports (Dg,i,Zg,i) for all potential members i ∈ Ng, but only reports Yg,i for

actual group members who self-select to join the group (Dg,i = 1). Similar to Section 2,

let Sg denote the sample selection event in potential group g.

The identification strategy in Section 2 applies to groups with at least two actual

members. Formally, this means the sample correction term in Equation (4) conditions on

ng ≥ 2. The identification strategy in Section 2 applies because under Assumption 1 the

individual correction term takes the form in Equation (5). That is, E(Ug,i|Xg,Zg,Sg,ng ≥

2) = E(Ug,i|Vg,i ≥−Z′
g,iδ ).

The first step of our estimator is to construct individual correction terms λg,i’s for

i ≤ ng by running a Probit regression of Dg,i on Zg,i in Equation (1) using all potential

group members i ∈ Ng. Let δ̂ denote the Probit estimator for δ from this step. For each

actual member i ≤ ng in group g, calculate

λ̂g,i ≡ φ(Z′
g,iδ̂ )/Φ(Z′

g,iδ̂ ), and ˆ̄
λg ≡

1
ng

∑
ng

i=1 λ̂g,i.

The second step is an OLS regression of Yg,i on Xg,i,Xg, λ̂g,i and ˆ̄
λg using the actual

group members. Let θ ≡
(

β̃0,β
′, γ̃ ′,σuv, σ̃uv

)′
be a column-vector that collects all

reduced-form parameters to be estimated in this step. For each group g and actual group

member i ≤ ng, define a row-vector of generated regressors:

Wg,i(δ̂ )≡
(

1,X ′
g,i,X

′
g, λ̂g,i,

ˆ̄
λg

)
.

Denote the total number of actual group members in the sample by N = ∑g≤G ng. Let
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W (δ̂ ) be an N-by-dim(θ) matrix that stacks the row-vector of generated regressors

Wg,i(δ̂ ) from all groups and actual members, and Y be an N-by-1 vector that stacks

the column-vectors Yg from all groups in the sample. Our estimator for θ in this step

is constructed by regressing Y on W (δ̂ ):

θ̂ ≡
[
∑g,iWg,i(δ̂ )

′Wg,i(δ̂ )
]−1 [

∑g,iWg,i(δ̂ )
′Yg,i

]
= [W (δ̂ )′W (δ̂ )]−1W (δ̂ )Y ,

where ∑g,i is shorthand for the double summation ∑g≤G ∑i≤ng . By definition, θ̂ provides

estimators for the reduced-form parameters ( ˆ̃
β0, β̂ , ˆ̃γ, σ̂uv, ˆ̃σuv).

The last step is to calculate the structural parameters from θ̂ using Equation (7).

Denote these estimators by (α̂, β̂0, γ̂).

We sketch a proof for the asymptotic property of the two-step m-estimator θ̂ . Let

A ≡ limG→∞
1
G ∑g≤G E

(
W ′

gWg
)
, where Wg is shorthand for Wg(δ ), which stacks Wg,i(δ )

over all i≤ ng, and is evaluated at the true parameter δ in the selection equation (1). First,

under standard regularity conditions, e.g., including finite, non-singular A and those in

Lemma 4.3 of Newey and McFadden (1994), 1
GW (δ̂ )′W (δ̂ ) and 1

GW (δ̂ )′Y converge in

probability to A and Aθ respectively as G→∞. With A invertible, this implies consistency

of the estimator: θ̂
p→ θ .

Next, under standard regularity conditions, the first-order condition in the second-step

regression implies:

√
G
(
θ̂ −θ

)
= A−1

{
−G−1/2

∑g sg(θ ; δ̂ )
}
+op(1),

where sg(θ ; δ̂ ) ≡ Wg(δ̂ )
′
[
Yg −Wg(δ̂ )θ

]
, with Wg(δ̂ ) being ng-by-dim(θ) and stacking

Wg,i(δ̂ ) across i in each group g. A second-order mean-value expansion of sg(θ ; δ̂ )

around δ implies:

G−1/2
∑g sg(θ ; δ̂ ) = G−1/2

∑g sg(θ ;δ )+Fg,0
√

G(δ̂ −δ )+op(1),

where Fg,0 ≡ E [∇δ sg(θ ;δ )] ∈Rdim(θ)×dim(δ ). Let rg(δ ) denote the influence function in
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the asymptotic linear representation of the first-step estimator δ̂ . That is,
√

G(δ̂ −δ ) =

G−1/2
∑g rg(δ )+op(1). The limiting distribution of θ̂ is then:

√
G
(
θ̂ −θ

) d−→ N (0,A−1BA−1),

where B ≡ limG→∞
1
G ∑g≤G E[mg(θ ;δ )mg(θ ;δ )′], with mg(θ ;δ )≡ sg(θ ;δ )+Fg,0rg(δ ).

The components in asymptotic variance A,B can both be consistently estimated by

plugging parameter estimates into their respective sample analogs. In our empirical

application, we use bootstrap resampling methods to calculate the standard errors.

In the last step, the remaining structural parameters, i.e., the peer effect α , the

contextual effects γ and the intercept β0 are estimated by plugging θ̂ in the formulas

in (7). Asymptotic variance of these structural parameters can be obtained by a direct

application of the Delta Method.

4 Extensions: Group Fixed Effects

4.1 Group Fixed Effects in Outcomes

We extend our method to allow for unobserved group fixed effects in the outcomes:

Y = αY +β0 +X ′
β +X ′

γ +η +U, (8)

where η is an unobserved group-level fixed effect. As before, individual selection into

the sample is based on Equation (1).

Using the same restrictions on (U,V ) as Assumption 1 in Section 2, we get

Y = β̃0 +Xβ +X γ̃ +σuvλ + σ̃uvλ + η̃ + ε , (9)

where η̃ ≡ η/(1−α) and (β̃0, γ̃,ε) are defined as in (4) so that E(ε|X ,Z,S ) = 0, which

implies (X ,Z) are exogenous in the sample. Without further restrictions, η̃ is generally

correlated with (X ,Z,U,V ) and therefore ε .
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There are several ways to estimate the parameters in (9), depending on the assumption

on how η is correlated with the other variables. First, in the simplest case, suppose

η is independent from (U,V,Z,X) and therefore ε . Write η̃ + ε = E(η̃) + ε̃ with

ε̃ ≡ ε + η̃ − E(η̃), so that E(ε̃|X ,Z,S ) = 0. By regressing y on (1,X ,X ,λ ,λ )

and using a necessary location normalization E(η̃) = 0, we can consistently estimate

(β̃0,β
′, γ̃ ′,σuv, σ̃uv). This then identifies (α,β0,γ).

In a setting where η is correlated with (U,V,X ,Z), one can estimate the model

using instruments, i.e., additional observed variables that are uncorrelated with η but are

correlated with (X ,Z), thus satisfying instrument exogeneity and relevance. Using these

instruments, one can consistently estimate (β̃0,β
′, γ̃ ′,σuv, σ̃uv) in (9) through two-stage

least squares.

Yet another option for estimating the model with correlated fixed effects is to

parameterize the dependence between η and (U,V ), and construct a correction term.

In the next section, we elaborate on this solution in more general settings.

4.2 Group Fixed Effects in Sample Selection

We now generalize the model in Section 4.1 by accommodating a second unobserved

group fixed effect in the sample selection equation. Suppose individuals self-select into

a group in the sample as follows:

Di = 1{Ziδ +ζ +Vi ≥ 0} , (10)

for each potential group member i ∈ N , where ζ is an unobserved group fixed effect.

The structural form of outcomes within each group is the same as (8), which includes a

group fixed effect η .

For convenience, define V ∗
i ≡ ζ +Vi and U∗

i = η +Ui; let V ∗ ≡ (V ∗
i )i∈N and

Z ≡ (Zi)i∈N ; let U∗ ≡ (U∗
i )i≤n and X ≡ (Xi)i≤n, where n denotes the number of actual

group members i with Di = 1. We maintain the following assumptions.
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Assumption 1’. (i) V is independent from (ζ ,Z), and Vi are independently distributed as

standard normal across potential group members. (ii) (U∗
i )i∈N and V ∗ are independent

from (Xi)i∈N and Z. (iii) E(U∗
i |V,ζ ) = E(U∗

i |Vi,ζ ) = π1ζ +π2Vi.

Conditions (i) and (ii) and the first equality in (iii) are analogous to the case with no

fixed effects in Section 2. The second equality in (iii) holds if (Ui,Vi,η ,ζ ) is multivariate

normal.

As in Section 4.1, plugging in the reduced form of Y gives:

Y = β̃0 +Xβ +X γ̃ +E
(

U∗+
α

1−α
U∗
∣∣∣∣X ,Z,S

)
+ ε̃ , (11)

where E(ε̃|X ,Z,S ) = 0 by construction. We can estimate the model using the following

steps:

Step 1. Use a correlated random effect model, as proposed in Chamberlain (1980), to

estimate the selection equation in Equation (10). Let F(ζ |Z) denote the distribution of ζ

conditional on Z, which is parameterized up to some unknown parameters. For example,

following Chamberlain (1980), we may adopt the specification below for the fixed effects

in group participation decisions:

Assumption 1’ (continued). (iv) ζ = Zτ + e, where Z is the average of individual Zi’s

within the group, and e⊥Z with e ∼ N(0,σ2
e ).

Under Assumption 1’ (iv), the distribution F(ζ |Z) is parameterized up to (τ,σe). We

estimate them jointly with δ using maximum likelihood:

(δ̂ , τ̂, σ̂e)= arg max
δ ,τ,σe

∑g≤G log
∫

∏i≤n Φ̃g,i(e;δ ,τ)Dg,i
[
1− Φ̃g,i(e;δ ,τ)

]1−Dg,i 1
σe

φ

(
e

σe

)
de,

where Φ̃g,i(e;δ ,τ) ≡ Φ(Zg,iδ + Zgτ + e). Here subscripts g index the groups in the

sample, and we use Dg,i,Zg,i to denote variables for i in a potential group g.

Step 2. Apply a generalized method to correct the bias due to sample selection, using

estimates for (δ ,τ,σe) from the previous step. Let S denote the event that “V ∗
j ≥−Z jδ
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for all j ≤ n and V ∗
k <−Zkδ for all other k ∈ N ”. For an actual group member i,

E(U∗
i |X ,Z,S ) = E(U∗

i |S ) =
∫

E(U∗
i |ζ ,Vi ≥−Ziδ −ζ )dF(ζ |S ), (12)

where the second equality is due to Assumption 1’ (iii) above. The integrand on the

right-hand side of (12) is:

E(U∗
i |ζ ,Vi ≥−Ziδ −ζ ) =

∫
E(U∗

i |ζ ,Vi)dF(Vi|Vi ≥−Ziδ −ζ )

=
∫

(π1ζ +π2Vi)dF(Vi|Vi ≥−Ziδ −ζ )

= π1ζ +π2λ (Ziδ +ζ ).

Under Assumption 1’-(ii), (iii) and (iv), we write the right-hand side of (12) as:∫ [
π1(Zτ + e)+π2λ (Ziδ +Zτ + e)

]
dF(e|S ∗).

where S ∗ denotes the event “e+Vj ≥−Z jδ −Zτ for all j ≤ n, and e+Vk <−Zkδ −Zτ

for all other k ∈ N ”. Under (i) and (iv) in Assumption 1’, e = ζ −Zτ is independent

from the vector of selection errors V . Then the conditional distribution of

e | e+V1 = t1,e+V2 = t2, ...e+V(#N ) = t(#N )

is normal with variance σ̃2 ≡
[
σ−2

e +(#N )
]−1 and mean σ̃2(∑i∈N ti) (where #N

denotes the cardinality of N ). Therefore, we can write (12) in the form of

π1

∫
(Zτ + e)dF̃(e|Z;θ)︸                      ︷︷                      ︸

ψ(Z)

+π2

∫
λ (Ziδ +Zτ + e)dF̃ (e|Z;θ)︸                                 ︷︷                                 ︸

ϕi(Z)

,

where F̃(e|Z;θ) is the distribution of e conditional on S ∗. This conditional distribution

is known up to (δ ,τ,σe), which can be consistently estimated from Step 1. The quantities

ψ,ϕi can be constructed using these estimates of (δ ,τ,σe). Note ϕi varies across

individual members in each group while ψ does not.

Step 3. Using the estimates from Steps 1 and 2, we can write the individual outcome Yi
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in (11) as

Yi = β̃0 +Xiβ +X γ̃ + π̃1ψ +π2ϕi + π̃2ϕ + ε̃i,

where ϕ denotes the group mean of ϕi, and π̃1 ≡ π1
1−α

, π̃2 ≡ απ2
1−α

. Let W̃i ≡

(1,Xi,X ,ψ,ϕi,ϕ). Provided E(W̃ ′
i W̃i|S ∗) has a full rank, we can consistently estimate

(β̃0,β
′, γ̃ ′, π̃1,π2, π̃2) by regressing Yi on W̃i in the sample. This in turn allows us to

construct consistent estimators for α,β0 and γ as before.

5 Monte Carlo

We present two Monte Carlo experiments, with different sizes of potential groups,

#N = 10 and #N = 50. For each group g and member i, let Xg,i and Zg,i, be two

distinctive scalar variables, drawn from the standard normal distribution independently.6

Let (Ug,i,Vg,i) be drawn from the bivariate normal with mean (0,0), unit variance and

covariance σuv. These error terms are independent across individuals and groups. The

sample selection is given by

Dg,i = 1{δ0 +δ1Xg,i +δ2Zg,i +Vg,i ≥ 0}, i ∈ Ng,g = 1, · · · ,G,

with δ = (0,1,1). Among the actual group members with Dg,i = 1, the outcomes are

generated through the reduced form:

Yg,i =
β0

1−α
+βXg,i +Xg

αβ + γ

1−α
+Ug,i +

α

1−α
Ug.

We set (α,β0,β ,γ,σuv) = (1/2,1,1,1,2/3). We experiment with sample sizes G =

250,500,1000,2000, and report average biases and mean-squared error (MSE) with

1,000 replications in Tables 1 and 2.

6With a slight abuse of notation, in this section, we use Zg,i to denote the instrument variable that enters
the selection equation, but not directly in the outcome equation.
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Table 1: Monte Carlo Results: #N =10
G Average Bias

α β0 β γ σuv

250 -0.040 0.112 0.001 0.141 -0.002
500 -0.015 0.043 0.000 0.055 0.001

1,000 -0.007 0.020 0.000 0.024 -0.001
2,000 -0.006 0.015 0.000 0.021 0.000

MSE
α β0 β γ σuv

250 0.042 0.315 0.002 0.557 0.006
500 0.011 0.075 0.001 0.143 0.003

1,000 0.005 0.036 0.000 0.068 0.002
2,000 0.002 0.018 0.000 0.034 0.001

Table 2: Monte Carlo Results: #N =50
G Average Bias

α β0 β γ σuv

250 -0.032 0.088 0.000 0.113 0.000
500 -0.014 0.039 0.000 0.054 0.000

1,000 -0.006 0.016 0.000 0.022 0.001
2,000 -0.003 0.009 0.000 0.011 0.000

MSE
α β0 β γ σuv

250 0.026 0.199 0.000 0.343 0.001
500 0.010 0.077 0.000 0.135 0.001

1,000 0.004 0.033 0.000 0.056 0.000
2,000 0.002 0.015 0.000 0.026 0.000

In Tables 1 and 2, both the average bias and MSE decrease at the same rate as the

sample size increases. This confirms our asymptotic theory that the two-step estimator

is root-G consistent. Convergence of the squared average bias at a rate faster than the

increase in sample sizes indicates the dominant component in MSE is the estimator

variance. Meanwhile, the size of groups does not have an obvious impact on estimation
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precision, especially in larger samples.

6 Peer Effects in Online Training

In this section, we apply the model to estimate peer effects in a large online teacher

training program in China, known as the Young Teacher Empowerment Program

(YTEP).7 The YTEP is an annual training program designed to boost the morale and to

improve the skills of young teachers in elementary and middle schools in rural China. To

participate in the YTEP program, applicants must be chosen by participating rural schools

and the education bureau in the local county government coordinating the training.

Our data was collected from the Training Year of 2019-2020, which consists of two

semesters (Fall 2019 and Spring 2020).8 The YTEP consists of two phases, mandatory

general courses in Fall 2019 and elective field courses in Spring 2020. All trainees

are automatically enrolled in two mandatory courses, Career Development and Teacher

Ethics. We investigate how peer effects affect the trainees’ lecture attendance in these

mandatory courses, which have a much larger enrollment than elective field courses.

The sample contains 8,627 trainees across 63 counties in 17 provinces of China.

The Career Development and Teacher Ethics courses consist of 17 and 12 independent,

synchronous lectures respectively.9 Instructors and contents differ across lectures in each

course. We collect data from 29 lectures in the sample. For each lecture, trainees first

decide whether to attend the lecture, and then decide on the duration of attendance (for

how long to stay in the lecture). We define all teachers from a county enrolled in the

program as a potential group for a specific lecture. Their decisions to attend lectures are

modeled as in (1). Potential group members who attended a lecture form an actual group,

which is county-lecture specific. We model actual group members’ duration of lecture

7YTEP details: http://www.youcheng.org/news_detail.php?id=645
8The data from the YTEP have been used in economics research (Li et al., 2022, Ma et al., 2023).
9For the career development course, the first two lectures are the opening ceremony and the program

introduction, and the last one is the semester closing ceremony.
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attendance, measured by the number of minutes stayed in a lecture, as the outcomes

determined in (2).10

As explained, potential peer groups are defined by counties, and indexed by g as in

Section 2. In the first stage, for each group g, the set of potential participants, denoted

by Ng, is defined as all trainees from that county who have enrolled in the courses. In

the second stage, an actual group is formed by those who are from a county and attended

a specific lecture. The size of an actual group is the number of participating trainees,

denoted by ng, for a county-lecture pair. Sample selection takes place when individuals

decide to participate in a lecture, thus becoming actual group members. In other words,

the selection into an actual group occurs within a predetermined potential group.

Figure 1: Interface of Instructional Platform

10The number of minutes for which trainees stayed in the lecture may exceed the actual instruction time
if they entered the virtual classroom early or stayed overtime to ask questions.
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The lectures are held synchronously online in the evenings on a weekly basis.

Figure 1 shows the user interface of the instructional platform. Upon entering the

meeting room, a lecture participant can watch the live broadcast of the lecture. Below

the presentation window, there is a chatroom where participants can communicate with

the instructor, TAs, and other trainees. More importantly, the participants can observe the

total number of other participants and nonparticipants (those who enrolled in the course

but did not attend this particular lecture) as well as the list of participants. The list tracks

entry or exit in real time.

Each trainee has a unique identifier formatted as “County + ID# + Name”. The list is

sorted by the characters of identifiers, and participants from the same county are placed

adjacently. Thus, a lecture participant could easily observe peers from the same county

sitting in the lecture, and be subject to potential peer effects. In addition, each county

has a coordinator who helps with program administration and communicates with the

trainees. County coordinators are usually local education administrators. They organize

trainees from the same county into a group via online social platforms, such as an online

WeChat group.11 Therefore, all trainees from the same county naturally form a potential

peer group for a specific lecture. For trainees attending a lecture, we observe the duration

of their attendance.

We obtain information about trainees from their registration records, as well as their

responses to routine program surveys during the training period (designed to collect

feedback). The program surveys consist of two waves, one at the end of the first semester

and the other upon completion of the program at the end of the second semester. Each

wave has a response rate of about 40%.The registration and survey provide demographic

features about the trainees and characteristics of their school and the county. We impute

missing values of the county characteristic, Encouraging County Coordinator, based on

11WeChat is a popular Chinese instant messaging smartphone application, similar to WhatsApp.
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the survey responses available.12 Table 3 summarizes the related variables (variables

with no designated units are dummies).

Table 3: Summary Statistics

Variable Obs Mean SD Min Max
Selection Stage
Lecture Attendance 250,183 0.404 0.491 0 1
Outcome Stage
Duration of Attendance (mins) 100,954 65.083 24.120 1 165
Personal Characteristics
Married 5,357 0.295 0.456 0 1
Gender (male) 8,573 0.230 0.421 0 1
Teaching Experience (yrs) 5,357 2.145 3.030 0 37
Teachers College 8,135 0.715 0.451 0 1
Tenured Teacher 8,452 0.452 0.498 0 1
Bachelor’s Degree (or higher) 8,233 0.800 0.400 0 1
Ethnicity (Han) 7,667 0.671 0.470 0 1
Slow Internet Speed 5,357 0.200 0.400 0 1
Village School 8,453 0.415 0.493 0 1
County Characteristics
Encouraging County Coordinator 8,000 0.255 0.436 0 1
Other Statistics
County Enrollment 63 136.778 157.221 5 1,020
Group Size 1,517 48.238 81.738 2 797

Note: Lecture Attendance and Duration of Attendance are auto-recorded by the instruction platform. Lecture

Attendance records all 8,627 trainees enrolled in the program in 29 lectures, yielding 250,183 observations in

total at the individual-lecture level. Duration of Attendance records 100,954 observations with positive duration

of attendance. Married, Teaching Experience, Slow Internet Speed, and Encouraging County Coordinator are

reported in a program survey. Other characteristics are reported in the program registration.

Specifically, Lecture Attendance equals to 1 if a trainee decides to join a lecture,

0 otherwise. As we pool 8,627 trainees’ attendance in 29 lectures, we obtain 250,183
12For Encouraging County Coordinator, we use the mode of values self-reported by survey respondents

from the same county to impute the missing values for non-respondents from the same county. In total,
3,487 missing values of Encouraging County Coordinator are imputed. The county mode replaces the
opposite responses so that the variables have the same values for everyone from the same county. Missing
values are assigned in the imputation if there are multiple modes.
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observations of participants-lecture pairs. The average rate of lecture attendance is

40.4%. In the outcome stage, we only include observations with positive duration of

attendance, leading to a total of 100,954 observations. On average, an individual stays in

a lecture for about 65 minutes; the average length of a lecture is around 95 minutes.

Among trainees, nearly 30% are married, and 23% are males. Trainees are mostly

young teachers with about 2 years of teaching experience on average; about 72% of them

graduated from teachers’ colleges. Over 45% of the trainees hold tenured positions, and

80% of them obtained a bachelor’s or higher degree.

About 20% of the trainees report slow internet speed, which may deter lecture

participation. Over 40% of the trainees work at rural village schools. We also include

the behavior of county coordinators, defining “encouraging county coordinator” if the

majority of the survey respondents from that county report that their coordinator sent

lecture reminders. About 25.5% of the trainees report that their coordinators do so.

We apply our multi-step method to estimate the peer effects on the trainees’

duration of lecture attendance, while accounting for self-selection in lecture attendance

(participation). Our group definition has two overlays, namely county and lecture. In

our context, for simplicity, joining a school/county upon employment is assumed to be

exogenously given. Self-selection occurs when trainees decide to attend a lecture after

enrolling in the training course, governed by (1).

In the first (selection) stage, we model the self-selection in attending a lecture and

becoming actual group members with the following specification:

Attendanceg,i = 1{δ0 +Z′
g,iδ +νg,i ≥ 0}, (13)

where Attendanceg,i is 1 if trainee i from the potential group g showed up in a lecture,

and is 0 otherwise. For the instrumental variables in Zg,i that affect the decision to

attend a lecture but not the duration of attendance, we use the marital status, Married,
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and its interaction with other covariates. It is likely that the decision to attend evening

lectures generally requires planning and coordinating with spouses. On the other hand,

the spouses may have little influence on the duration of lecture attendance, once a teacher

already decides and commits to joining the lecture.

We also control for lecture-level fixed effects by including lecture dummies in Zg,i.13

These lecture dummies are meant to capture lecture-level heterogeneities that are not

measured in the data, such as content relevance or instructor competence. If not

controlled for and left in the error terms, these unobserved, lecture-level fixed effects

would also result in selection bias. More importantly, the method in our paper addresses

the selection bias due to the individual-level in addition to lecture-level unobserved

factors. In other words, even after including these lecture dummies, we still need to apply

our method because unobserved individual-level factors may also lead to endogenous

selection into lecture attendance.

Table A1 reports the first-stage probit results. The signs of coefficient estimates are

generally consistent with the expectations. For instance, male teachers are less likely

than their female peers to attend a lecture. Graduates from teachers’ colleges participate

in the program more frequently than those without formal teacher training. Tenured

trainees are less active than their untenured colleagues. Slow internet connectivity is a

significant disincentive for lecture participation. Working at rural village schools tends

to decrease married individuals’ attendance but incentivizes unmarried ones to join a

lecture with a higher probability. A potential explanation is that unmarried rural teachers

may utilize the training program as an opportunity to change their career path. Having

an active coordinator increases the participation likelihood of unmarried trainees but not

that of married ones. A Wald test shows that Married and its interaction with other

13Such a specification is not subject to the “incidental parameter” problem, because in our context the
number of lectures is small and fixed, relative to the much larger number of county-teacher pairs.
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covariates are jointly significant at the 1% level.14 These results indicate that Married

and its interaction terms do affect the decision of participation (attending a lecture), as

required for the relevance of instrumental variables.

We index actual groups by subscripts g̃ (actual groups are defined on the level of

county-lecture pairs); we index trainees who self-select into each group g̃ by i. In the

second (outcome) stage, we adopt the following specification:

Durationg̃,i = β̃0 +X ′
g̃,iβ +X ′

g̃γ̃ +σuvλg̃,i + σ̃uvλ̄g̃ + εg̃,i, (14)

where Durationg̃,i records how long individual i stays in a lecture, and Xg̃,i contains

individual demographic variables in Table 3, except for Married, which is used as the

instrument discussed above. The covariates Xg̃,i also include a vector of lecture dummies

as in the first stage.

Our method applies to samples where the number of groups (county-lecture

combinations) is large relative to the size of each group. To allow for peer and contextual

effects, we restrict our groups to have at least two trainees from the same county attending

the same lecture. This leads to a sample of 1,517 actual groups with an average group

size of 48. The 90th percentile of group size is 89, which is still relatively smaller than

the number of groups in the data-generating process.

The vector X ′
g̃ consists of the group averages of Xg̃,i with each county-lecture

combination, as well as the county characteristic. The variable λg̃,i is the inverse Mills

ratio constructed from the estimates in Table A1, and λ̄g̃ is the group average of λg̃,i within

a county-lecture pair. The inclusion of λg̃,i and λ̄g̃ helps us to deal with two sources

of endogeneity at the same time: self-selection into participation (lecture attendance)

and simultaneity in the determination of peer outcomes. Specifically, the reduced form

contains a composite error that includes the individual structural error and those of other

14The Wald-statistic for testing the joint significance of all interaction terms involving Married is 88.8,
with 10 degrees of freedom.

25



group members. To correct for sample selection, λg̃,i takes care of the correlation between

Vi and Ui, and λ̄g̃ addresses the correlation between V and U . To reiterate, the inclusion

of λg̃,i and λ̄g̃ in the reduced form provides variations that enable us to solve the reflection

problem.

Table A2 reports the OLS estimates and standard errors. The standard errors are

calculated using 1,000 bootstrap replications done by resampling the actual groups with

replacement. Generally, individual characteristics have statistically significant effects

on the duration of lecture attendance in the reduced form, with signs consistent with

intuition. For instance, slow internet speed has a negative impact on attendance duration,

which is significant at the 10% level. The statistically significant coefficients of λg̃,i and

λ̄g̃ indicate a high correlation between the error terms in the selection stage and those in

the outcome stage. The large and significant negative coefficient of the inverse Mills ratio

is also documented for other contexts in the literature (Heckman, 1976, 1977).

By plugging the estimates of reduced-form parameters from Table A2 into (7), we

obtain the estimates of structural parameters, which are reported in Table 4. As noted

above, the inclusion of λg̃,i and λ̄g̃ in the second-stage regression accounts for the self-

selection in lecture attendance. Additionally, with the inclusion of λg̃,i and λ̄g̃, the order

and rank conditions for recovering the structural coefficients from the reduced-form

coefficients are satisfied. The standard errors are estimated using bootstrap resampling.

The estimate of peer effects, i.e., α in (2), is 0.681, and the coefficient is statistically

significant at the 1% level. We may interpret peer effects α as the marginal effect of the

group average in the structural form (Gaviria and Raphael, 2001, Bramoullé, Djebbari,

and Fortin, 2020, Sacerdote, 2011). That is, a 10-minute increase in the average duration

of attendance among group peers leads to an 6.81-minute increase in one’s own duration

of attendance. Our estimate of peer effects is within the unit interval (0,1), which is

comparable with those reported for other contexts in the literature (Calvó-Armengol,
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Patacchini, and Zenou, 2009, Bramoullé, Djebbari, and Fortin, 2009, Lin, 2010).

Table 4: Estimates of Social Effects in Structural Equation

Variable Estimate Standard Error
Peer Effects 0.681∗∗∗ 0.104

Intercept 60.633∗∗∗ 13.576
Gender (male) 0.486 0.462

Teaching Experience (yrs) 0.013 0.036
Teachers College −0.992∗∗∗ 0.236
Tenured Teacher 2.296∗∗∗ 0.413

Bachelor’s Degree (or higher) −0.796∗∗∗ 0.259
Ethnicity (Han) 1.413∗∗∗ 0.249

Slow Internet Speed −0.496∗ 0.282
Village School 1.085∗∗∗ 0.219

Average Gender (male) −2.141 1.349
Average Teaching Experience −0.215∗∗∗ 0.059

Average Teachers College 0.550 0.476
Average Tenured Teacher −0.262 0.347

Average Bachelor’s Degree (or higher) 1.315∗∗ 0.513
Average Ethnicity (Han) −0.803∗∗ 0.345

Average Slow Internet Speed −1.633 1.271
Average Village School −0.583∗ 0.335

Encouraging County Coordinator −0.434∗∗∗ 0.154

The standard errors are estimated by bootstrap resampling on the groups with replacement for 1,000

replications. Significance Level: *** 1%, ** 5%, * 10%.

The contextual effects of some covariates, such as Teaching Experience, Bachelor’s

Degree (or higher), and Village School, are statistically significant in the structural form.

One tends to stay shorter in a lecture if the actual group members are more experienced,

possibly driven by a large proportion of new teachers who decide to leave the lectures

sooner if there aren’t enough peers with similar seniority. In some cases, the direct effects

(β ) and the corresponding contextual effects (γ) have opposite signs, which may depend

on whether trainees with certain characteristics are substitutes or complements in the

determination of attendance duration (Blume, Brock, Durlauf, and Jayaraman, 2015).
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For comparison, we also estimate the model of peer effects in (2) while intentionally

ignoring the sample selection issue in (1). However, in this case, without exogenous

variation from instruments in the selection equation, we need other exclusion restrictions

to solve the reflection problem.15 In particular, we exploit a variable (internet speed) that

has a direct effect on an individual’s own duration of attendance, but has no contextual

effect on others’ in the structural form. Such an exclusion restriction is known to help

solve the reflection problem in social interactions models (Manski, 1993, Moffitt, 2001).

We posit that internet speed has a direct effect on an individual’s own outcome

(duration of lecture attendance), but no contextual effect on others’ outcomes. The

latter means an individual’s duration of attendance is not immediately affected by the

proportion of peers who have slow internet access. This is confirmed by results in Table 4,

which show the proportion of group peers with slow internet has no significant effect on

an individual’s duration of attendance. Hence, to estimate (2) while ignoring sample

selection due to (1), we exploit this exclusion restriction on the internet speed. 16

We now provide details in how to estimate (2) while ignoring sample selection and

using internet speed as a non-contextual variable. Let I denote the vector of dummy

variables indicating slow internet speed for each member in a group, and let X denote the

vector of all other covariates. The structural form is

Y = αY +β0 +X ′
β +X ′

γ +βII +U, (15)

which implies the following reduced form:

Y = β̃0 +X ′
β +X ′

γ̃ +βII + γ̃II +Ũ , (16)

15We have 2K + 2 parameters in the structural form (2). Neglecting sample selection would lead to a
reduced form that drops λi and λ̄ from (6) and only has 2K +1 parameters. Hence, the order condition for
recovering structural parameters does not hold.

16Apart from internet speed, two other variables (Teachers College and Tenured Teacher) also show
significant direct effects but no statistically significant contextual effects in Table 4. We did not consider
them as candidates satisfying exclusion restrictions, because the literature has documented evidence of
education contextual effects (Harmon, Fisman, and Kamenica, 2019, Laliberté, 2021), and tenure-related
peer effects (De Grip, Sauermann, and Sieben, 2016).
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where Ũ , β̃0, γ̃ are defined as in (3) and γ̃I =
αβI
1−α

. With the covariate support satisfying

the rank condition for the OLS regression in (16), we identify β̃0,β , γ̃,βI, γ̃I , and then

recover all structural parameters in (15) as

α =
γ̃I

βI + γ̃I
; β0 = (1−α)β̃0; γ = (1−α)γ̃ −αβ . (17)

For estimation, we regress Yg,i on Xg,i,Xg, Ig,i, Ig and an intercept, using the same sample

for the model with sample selection, and then use (17) to calculate the estimates for

structural parameters.

Table A3 reports the estimates of the reduced form in (16); Table 5 reports estimates

of structural parameters using (17). To illustrate the value of our method in Section 2,

we use the model underlying Table 5 (i.e., ignoring sample selection, and using internet

speed as an excluded variable with no contextual effects to solve the reflection problem)

as a close comparison to our selection model.17

Some estimates for direct and contextual effects in these two tables are comparable in

terms of signs and significance, despite different identification and estimation strategies.

Nonetheless, Table 5 shows that ignoring the sample selection in lecture attendance, we

obtain an estimate of 0.838 for the peer effect, which is statistically significant at the 1%

level. This estimate differs from that reported in Table 4 (0.681), and the discrepancy is

large relative to the standard errors reported.

The distinction between the peer effect estimates in Table 4 and Table 5 illustrates the

consequence of failing to account for sample selection bias due to endogenous lecture

participation. Specifically, ignoring the sample selection has led to overestimation of

peer effects in this context. Intuitively, teachers decide to stay in lectures for longer

because of their latent (unobservable) self-motivation, as well as positive peer effects.

17To reiterate, the model in Table 4 accommodates endogenous self-selection into lecture participation,
and constructs correction terms in the first stage to resolve the reflection (identification) problem. In
comparison, the model in Table 5 relies on an exclusion restriction, which is supported by estimates from
the selection model, to solve the identification issue.
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Not accounting for sample selection in estimation would mean neglecting the role of

such latent motivation factors, and instead attributing their impact on lecture attendance

to the structural peer effects. It is therefore not surprising that ignoring sample selection

has led to overstating these peer effects in our setting. On the other hand, once sample

selection is properly accounted for, the peer effects turn out to be more moderate, as is

confirmed in our analysis above.

Table 5: Structural Estimates Ignoring Sample Selection

Variable Estimate Standard Error
Peer Effects 0.838∗∗∗ 0.052

Intercept 15.254∗∗∗ 4.846
Gender (male) −1.765∗∗∗ 0.235

Teaching Experience (yrs) 0.085∗∗ 0.036
Teachers College −0.089 0.194
Tenured Teacher 0.316 0.285

Bachelor’s Degree (or higher) −0.391 0.245
Ethnicity (Han) 1.154∗∗∗ 0.234

Slow Internet Speed −1.427∗∗∗ 0.231
Village School 1.069∗∗∗ 0.220

Average Gender (male) −0.134 0.772
Average Teaching Experience −0.149∗∗∗ 0.042

Average Teachers College 0.281 0.272
Average Tenured Teacher −0.250 0.304

Average Bachelor’s Degree (or higher) 0.957∗∗ 0.378
Average Ethnicity (Han) −0.993∗∗∗ 0.282

Average Slow Internet Speed – –
Average Village School −0.794∗∗∗ 0.254

Encouraging County Coordinator −0.100 0.067

The standard errors are estimated by bootstrap resampling on the groups with replacement for 1,000

replications. Significance Level: *** 1%, ** 5%, * 10%.
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7 Conclusion

This paper estimates peer effects in self-selected groups that are formed out of

endogenous individual participation decisions. We correct the sample selection bias

using individual instruments that affect the participation decisions, but do not directly

affect the outcomes. In the context of social interactions, dealing with sample selection

requires the insertion of both individual-level and group-level composite correction

terms. The inclusion of this latter, group-level correction term provides additional sources

of exogenous variation that help us to resolve the reflection problem.

We apply our method to study peer effects in an online teacher training program

in China, where the trainees endogenously decide to participate in online lectures. We

find significant peer effects in the duration of lecture attendance among trainees after

accounting for sample selection bias. Our analysis also shows ignoring the sample

selection in this context would result in overestimation of peer effects.
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Appendix

Table A1: Selection Stage Probit Estimation Results

Variable Estimate Standard Error
Intercept −0.727∗∗∗ 0.025

Gender (male) −0.168∗∗∗ 0.010
Teaching Experience (yrs) −0.004 0.003

Teachers College 0.050∗∗∗ 0.009
Tenured Teacher −0.155∗∗∗ 0.009

Bachelor’s Degree (or higher) 0.050∗∗∗ 0.011
Ethnicity (Han) −0.021∗∗ 0.009

Slow Internet Speed −0.063∗∗∗ 0.010
Village School 0.021∗∗ 0.009

Encouraging County Coordinator 0.049∗∗∗ 0.010
Teaching Experience Squared 0.000 0.000

Married 0.000 0.029
Gender (male) × Married −0.013 0.020

Teaching Experience × Married 0.009∗∗∗ 0.003
Teachers College × Married 0.066∗∗∗ 0.017
Tenured Teacher × Married 0.027∗ 0.016

Bachelor’s Degree (or higher) × Married −0.055∗∗∗ 0.020
Ethnicity (Han) × Married 0.012 0.017

Slow Internet Speed × Married −0.017 0.020
Village School × Married −0.073∗∗∗ 0.016

Encouraging County Coordinator × Married −0.090∗∗∗ 0.017
Lecture Fixed Effects Yes

Wald Test for joint significance of IVs (Married and its interactions): χ2 = 88.8, d.f.=10, p-value <0.001.

Significance Level: *** 1%, ** 5%, * 10%.
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Table A2: Regression Results in Outcome Stage
(Dependent variable: duration of lecture attendance in minutes)

Variable Estimate Standard Error
Intercept 190.067∗∗∗ 20.368

Gender (male) 0.486 0.462
Teaching Experience (yrs) 0.013 0.036

Teachers College −0.992∗∗∗ 0.236
Tenured Teacher 2.296∗∗∗ 0.413

Bachelor’s Degree (or higher) −0.796∗∗∗ 0.259
Ethnicity (Han) 1.413∗∗∗ 0.249

Slow Internet Speed −0.496∗ 0.282
Village School 1.085∗∗∗ 0.219

Average Gender (male) −5.673∗∗∗ 2.195
Average Teaching Experience −0.646∗∗∗ 0.104

Average Teachers College −0.394 1.350
Average Tenured Teacher 4.079∗∗∗ 1.376

Average Bachelor’s Degree (or higher) 2.423∗∗ 1.123
Average Ethnicity (Han) 0.500 0.701

Average Slow Internet Speed −6.179∗∗∗ 2.025
Average Village School 0.486 0.585

Encouraging County Coordinator −1.362∗∗∗ 0.361
λ̂ −23.118∗∗∗ 4.094
ˆ̄
λ −49.350∗∗∗ 15.427

Lecture Fixed Effects Yes

Note: the standard errors are estimated by bootstrap resampling on the groups with
replacement for 1,000 replications. Significance Level: *** 1%, ** 5%, * 10%.
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Table A3: Regression in Outcome Stage (Ignoring Sample Selection)

Variable Estimate Standard Error
Intercept 94.144∗∗∗ 2.955

Gender (male) −1.765∗∗∗ 0.235
Teaching Experience (yrs) 0.085∗∗ 0.036

Teachers College −0.089 0.194
Tenured Teacher 0.316 0.285

Bachelor’s Degree (or higher) −0.391 0.245
Ethnicity (Han) 1.154∗∗∗ 0.234

Slow Internet Speed −1.427∗∗∗ 0.231
Village School 1.069∗∗∗ 0.220

Average Gender (male) −9.954∗∗∗ 1.921
Average Teaching Experience −0.478∗∗∗ 0.086

Average Teachers College 1.275 1.235
Average Tenured Teacher 0.088 0.614

Average Bachelor’s Degree (or higher) 3.880∗∗∗ 1.193
Average Ethnicity (Han) −0.159 0.695

Average Slow Internet Speed −7.383∗∗∗ 2.004
Average Village School 0.629 0.613

Encouraging County Coordinator −0.620∗ 0.341
Lecture Fixed Effects Yes

Significance Level: *** 1%, ** 5%, * 10%.
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